evaluate_batch#
- TwinModel.evaluate_batch(inputs_df)#
Evaluate the twin model with historical input values given with a data frame.
- Parameters:
- inputs_df: pandas.DataFrame
The historical input values stored in a pandas dataframe. It must have a ‘Time’ column and all twin model inputs history you want to simulate (one input per column),starting at time instant t=0.(s). If a twin model input is not found in the dataframe columns then this input is kept constant to its initialization value. The column header must match with a twin model input name.
- Returns:
- output_df:
pandas.DataFrame
The twin output values associated to the input values, stored in a pandas.DataFrame.
- output_df:
- Raises:
- TwinModelError:
if initialize_evaluation(…) has not been called before, if there is no ‘Time’ column in the inputs dataframe, if there is no time instant t=0.s in the inputs dataframe.
Examples
>>> import pandas as pd >>> from pytwin import TwinModel >>> twin_model = TwinModel(model_filepath='path_to_your_twin_model.twin') >>> inputs_df = pd.DataFrame({'Time': [0., 1., 2.], 'input1': [1., 2., 3.], 'input2': [1., 2., 3.]}) >>> twin_model.initialize_evaluation(inputs={'input1': 1., 'input2': 1.}) >>> outputs_df = twin_model.evaluate_batch(inputs_df=inputs_df)